

JST共創の場形成支援プログラム(COI-NEXT) 政策重点分野(量子技術)

量子ソフトウェアとHPC・シミュレーション技術の 共創によるサスティナブルAI研究拠点

藤堂眞治 東京大学大学院理学系研究科

https://sqai.jp/ concierge@sqai.jp

古典AIからサスティナブルAIへ

・AIの「スケーラビリティ」

- ・ 従来の機械学習: 精度を上げるにはより大量の学習データと複雑な学習モデルが必要
- ・ムーアの法則の終焉:HPC技術における微細化・高速化の限界
- ・量子AIの可能性・将来性
 - ・近年の量子デバイス技術の進展
 - ・少数データ、少数パラメータによる高度な量子機械学習
 - ・古典計算が難しい量子多体問題の量子シミュレーション

・量子コンピュータの莫大な表現空間を利用

・低い訓練コストで高い汎化性能

量子極限リザバー計算

高エネルギー物理学におけるイベント分類

Terashi et al (2021)

Sakurai et al (2021)

量子シミュレーション

・量子多体系シミュレーション

・分子・固体・原子核のシミュレーション

周期系に対する変分量子シミュレーション

実時間ダイナミクスシミュレーション

Yoshioka et al (2022)

Sato et al (2021)

量子最適化

・様々な量子オプティマイザーによる最適化

・問題分割技術、統計力学的解析

ブラックボックス最適化による物質設計

量子オットー熱機関

Kitai et al (2020)

Boubakour et al (2023)

・シームレスに使える統合環境

• Supercomputer + GPU + FPGA + QC + …

・量子計算におけるHPCの重要性

- ・量子回路シミュレーション
- ・量子誤り訂正・誤り抑制
- ・量子コンパイラ・量子回路最適化
- ・初期量子状態の準備
- ・量子コンピュータ間の通信

共創の場形成支援プログラム (量子技術分野)

・SQAI: サスティナブル量子AI研究拠点

- ・2022年10月から2032年3月まで10年間
- ・量子コンピュータとHPCを統合した持続可能な量子AI基盤の創出
- 参画機関·参画企業
 - 東京大学、慶應大学、理研、OIST、シカゴ大、川崎市、 Amoeba Energy、SCSK、Quemix、京セラ、JSR、 TIER IV、TOPPAN、トヨタ、NSSOL、IBM、 SMFG、日本総研、バイトルヒクマ、BIPROGY、 blueqat、みずほR&T、三菱ケミカル、MUFG、 村田機械、オレンジテクラボ、OQC、NVIDIA、 qBraid、富士フィルム、博報堂DY、 三井化学、アズラボ、デロイト、 デンソー、J-Power、三菱電機、 PSNRD、長大
 - ·39機関(2024年9月現在)

量子コンピュータとHPCの統合による量子AI基盤

・「サスティナブルAI」とは

- ・少数データ、少数パラメータでも高い性能を示す量子機械学習と量子シミュレーションや量子計 測データを組み合わせた量子AI技術
- ・従来のAI技術と比較して、計算量や消費電力を圧倒的に削減
- ・エネルギーの不安なしに社会のいたるところで存分に活用

・拠点ビジョン ⇒ 3つのターゲット ⇒ 5つの研究開発課題

量子埋め込み:量子回路⇔古典コンピュー

- ・古典コンピュータの持っている 情報をどのよう
- ・量子コンピュータからの出力をどのよ
- ・新しい「データ構造」

・テンソルネットワーク, ボルツマンマシン

テンソルネットワーク表現

- ・量子多体系の量子状態
 - MPS, Tree TN, MERA, PEPS
- ・統計力学模型の分配関数
 - ・テンソル繰り込み群
- ・テンソルネットワークによる機械学習
 - ・ニューラルネットワーク・生成モデルの圧縮
- ・階層構造の情報圧縮
 - ・同次多項式表現
 - ・偏微分方程式のTNシミュレーション

Gourianov et al (2022)

Gao et al (2020)

量子埋め込み:量子回路→テンソルネットワーク

- ・「量子状態」からTNへの変換は非自明
 - ・TNトモグラフィー
 - ・量子メモリ、量子長距離通信

共創の場形成支援プログラム (量子技術分野)

・SQAI: サスティナブル量子AI研究拠点

- ・量子コンピュータとHPCを統合した持続可能な量子AI基盤の創出
- ・5つの研究開発課題
 - ・量子機械学習、量子シミュレーション、量子埋め込み、量子最適化、量子HPC
- ·参画機関·参画企業
 - 東京大学、慶應大学、理研、OIST、シカゴ大、川崎市、 Amoeba Energy、SCSK、Quemix、京セラ、JSR、 TIER IV、TOPPAN、トヨタ、NSSOL、IBM、 SMFG、日本総研、バイトルヒクマ、BIPROGY、 blueqat、みずほR&T、三菱ケミカル、MUFG、 村田機械、オレンジテクラボ、OQC、NVIDIA、 qBraid、富士フィルム、博報堂DY、 三井化学、アズラボ、デロイト、 デンソー、J-Power、三菱電機、 PSNRD、長大
 - ·39機関(2024年9月現在)

