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古典AIからサスティナブルAIへ

• AIの「スケーラビリティ」 

• 従来の機械学習：精度を上げるにはより大量の学習データと複雑な学習モデルが必要 

• ムーアの法則の終焉：HPC技術における微細化・高速化の限界 

• 量子AIの可能性・将来性 

• 近年の量子デバイス技術の進展 

• 少数データ、少数パラメータによる高度な量子機械学習 

• 古典計算が難しい量子多体問題の量子シミュレーション
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量子機械学習

• 量子コンピュータの莫大な表現空間を利用 

• 低い訓練コストで高い汎化性能
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量子極限リザバー計算

Sakurai et al (2021)

高エネルギー物理学におけるイベント分類

Terashi et al (2021)



量子シミュレーション

• 量子多体系シミュレーション 

• 分子・固体・原子核のシミュレーション
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周期系に対する変分量子シミュレーション

Yoshioka et al (2022)

実時間ダイナミクスシミュレーション

Sato et al (2021)
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FIG. 2. (a) Potential energy curves of the linear hydrogen chain computed at bUCCSD-Real, CCSD, MP2, RHF, and FCI with the STO-3G
basis sets. Each unit cell consists of two hydrogen atoms each, and three k points are sampled from grid. Twelve qubits are used for the
bUCCSD-Real. (b) Absolute error from the FCI calculation. In the weakly correlated region, the bUCCSD-Real ansatz are slightly more
accurate than CCSD, whose deviation crosses from positive to negative near 2.6 Bohr. The dotted line indicates the chemical accuracy (1.6 ×
10−3 Hartree).

outcome of the electronic interaction varies diversely along
the atom separation; the system experiences a metal-insulator
transition with a strongly correlated regime in between. As
shown in Fig. 2, the bUCCSD-Real ansatz correctly captures
such a complex behavior. It is evident from the potential en-
ergy curve shown in Fig. 2(a) that strong electronic correlation
develops as atoms become separated. Therefore, the classi-
cal gold-standard CCSD and CCSD(T) methods result in a
large deviation from the exact diagonalization, or the FCI; see
Fig. 2(b). In contrast, the bUCCSD-Real ansatz can describe
the behavior of hydrogen atoms much more accurately, ow-
ing to the enhanced representability of the variational ansatz.
The bUCCSD-Real ansatz can simulate the weakly correlated
region as precise as the CCSD method and suppresses the
deviation in the strongly correlated regime. Considering the
fact that the ansatz is not designed to capture the whole Hilbert
space with higher-order electronic excitations, we expect that
the calculation can be systematically improved by applying
more powerful and sophisticated ansatze such as the ADAPT
or cluster-Jastrow ansatze [36,37].

It should be noted that although the result by the bUCCSD-
Real ansatz is presented in the current work, it may be
desirable to employ an ansatz with complex variables (such
an example is shown in Appendix C). Extending real variables
to complex variables results in effectively doubling the num-
ber of variables. Nonetheless, the disadvantages of extending
to complex variables are presumably compensated by using
the momentum conservation law [Eq. (2)]; the translational
symmetry leads to a considerable reduction in the number of
parameters, especially when many k points must be consid-
ered, such as in the three-dimensional systems.

Next, we turn to the band-structure calculation of the hy-
drogen dimer chain. Such two-leg ladder systems are of strong
interest from both the theoretical and experimental aspects,
because synthesized compounds on ladder structures may
show exotic phenomena such as the unconventional super-
conductivity and spin-liquid behavior [64]. In particular, the
half-filled Hubbard model on a two-leg ladder is gapped by
both charge and spin excitations, as opposed to that on the
linear chain. Such a state with spin singlets on each rung has
been found to evolve into a superfluid phase by additional
spin-exchange interaction between rungs [65]. Here, we take a

large distance between hydrogen dimers so that the system is
described by the coherent spin singlet state. The quasiparticle
spectrum of the system is obtained by the ionized/electron-
attached QSE method introduced previously. As can be seen
from Fig. 3, both the highest occupied and lowest unoccupied
bands are simulated precisely. In particular, the direct band
gap estimated at crystal momentum kL = π/4 (L: unit-cell
length) is 1.5047 Hartree, which is consistent with the EOM-
CCSD calculation with an error less than 3 × 10−4 Hartree.

VI. SUMMARY AND OUTLOOK

We have presented a framework for simulat-
ing the electronic structures of solids using NISQ

FIG. 3. (a) Band structure of the hydrogen dimer chain computed
at bUCCSD-Real, CCSD, and RHF with the STO-3G basis sets. The
energy is shifted so that the highest energy of the occupied band
is zero. Two bands are well separated by a gap owing to the co-
herent spin singlet formation. (b) Absolute deviation of the electron
affinity (upper panel) and ionization potential (lower panel) from the
equation-of-motion CCSD calculation. A unit cell considered in the
calculation consists of a pair of hydrogen atoms that are 1.2 Bohr
apart from each other, and the distance between dimers is taken as
4 Bohr. Two k points are sampled from a uniform grid. Eight qubits
are used for the bUCCSD-Real.
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essential to describe e.g, the tunneling ionization, 
and the condition (iii) is important to properly 
define and calculate physical observables under the 
external electromagnetic field. 

One of the theoretical frameworks that satisfies 
these conditions is the time-dependent multi-
configuration self-consistent-field method (TD-
MCSCF) [3–11]. In TD-MCSCF, the all-electron 
wavefunction is represented by superposition of the 
Slater determinant (electron configuration) Φ!(#),  

Ψ(#) =,-!(#)Φ!(#)
!

. (2) 

It is the same ansatz of the wavefunction used in the 
configuration interaction (CI) method in atomic 
physics, molecular physics, and quantum chemistry. 
The feature of TD-MCSCF is that the CI coefficient 
(!(#) and the orbital function )*"(#)+ consisting 
of the Slater determinants are both time-dependent 
(Fig. 1). 

Among the TD-MCSCF framework, the 
multiconfiguration time-dependent Hartree-Fock 
(MCTDHF) method [3–7] is based on the full CI 
expansion using the time-dependent orbitals. 
Therefore, it guarantees systematically improved 
description with increasing number of orbitals, 
converging to the TDSE solution [condition (i)]. By 
evolving not only CI coefficients but also orbitals, 
it can describe the ionization process with fewer 
orbitals than when using a fixed orbitals [condition 
(ii)]. In addition, by adopting the equation of motion 

based on the time-dependent variational principle 
(TDVP), the gauge invariance and Ehrenfest 
theorem can be satisfied [condition (iii)]. In this 
paper, TDVP is introduced in Section 2, and TD-
MCSCF is introduced in Section 3. 

The CI expansion of Eq. (2) is divided into the 
reference configuration Φ(#) (the first term in Fig. 
1), the singly excited configurations from Φ(#), the 
doubly excited configurations, and so on, and can 
be rewritten as 

Ψ(#) = 0-"(#) + -2(#)3Φ(#), (3) 

-2(#) = 	-2#(#) + -2$(#) +⋯, (4) 

where (#(#)  is the complex amplitude of the 
reference configuration, (,$(#) is the one-electron 
excitation operator, (,%(#)  is the two-electron 
excitation operator, and so on. The MCTDHF 
method, which incorporates all N-electron 
excitations in an N-electron system, has a difficulty 
that the computational cost increases exponentially 
with the number of electrons. One can reduce the 
computational cost by truncating the expansion of 
Eqs. (4) (e.g, up to (,%(#)), but the truncated CI 
expansion does not satisfy size extensivity [12].   

Therefore, we consider the cluster expansion,  
Ψ(#) = 5%&(()Φ(#).	 (5) 

It is the same ansatz of wavefunction used in the 
coupled cluster (CC) method in atomic physics, 
molecular physics, and quantum chemistry. The CC 
method has the advantage of being size-extensive 
even if the expansion is truncated. For example, 
even when only (,%(#) is included in Eq. (4), the 
Taylor expansion of the exponential operator shows 
that multielectron excitations are captured in the 
form of product as  

5%&! = 1 + -2$ +
1
2-
2$$ +

1
6-
2$*⋯. (6) 

The size extensivity guarantees uniform accuracy 
independent of the number of electrons. We have 
developed a time-dependent optimized coupled-
cluster method (TD-OCC) based on Eq. (5) [13]. Its 
feature is that both the excitation operator (,&(#) 

 
Fig. 1: Schematic diagram of the TD-MCSCF wave 
function． 



量子最適化

• 様々な量子オプティマイザーによる最適化 

• 問題分割技術、統計力学的解析
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ブラックボックス最適化による物質設計

Kitai et al (2020)

量子オットー熱機関

Boubakour et al (2023)

Quantum Annealing

Machine Learning Simulation

BOUBAKOUR, FOGARTY, AND BUSCH PHYSICAL REVIEW RESEARCH 5, 013088 (2023)

FIG. 1. Schematic of the heat engine cycle. The y axis represents
the entropy of the WM and the x axis represent the trap frequency
and the interaction.

[34,35]. The engine cycle we explore is similar to a standard
Otto cycle except that the adiabatic strokes occur by chang-
ing two parameters: the trap frequency ω and the interaction
strength g. A schematic is shown in Fig. 1 and the individual
strokes are given by

Adiabatic compression (1 → 2): The WM is initially
trapped in a harmonic potential with frequency ωi and at
equilibrium with inverse cold temperature βc. The interaction
strength is given by gi. From there a compression stroke is
carried out that performs work on the system by increasing the
trap frequency to ω f and changing the interaction strength to
g f . The work is given by Wc = ⟨H (ω f , g f )⟩2 − ⟨H (ωi, gi )⟩1.

Hot isochore (2 → 3): The next stroke increases the
temperature of the WM by coupling it to an external hot bath
at the inverse temperature βh with the control parameters g f
and ω f fixed. In equilibrium the heat exchanged during this
stroke is given by Qh = ⟨H (ω f , g f )⟩3 − ⟨H (ω f , g f )⟩2.

Adiabatic expansion (3 → 4): The system is then de-
coupled from the hot bath and work is extracted from the
WM by adiabatically driving the trap frequency and inter-
action strength back to ωi and gi. The work is given by
We = ⟨H (ωi, gi )⟩4 − ⟨H (ω f , g f )⟩3.

Cold isochore (4 → 1): In the last stroke the WM is
cooled down by exchanging heat with a cold bath at the in-
verse temperature βc. It returns to the initial state and the heat
exchanged during this stroke is given by Qc = ⟨H (ωi, gi )⟩1 −
⟨H (ωi, gi )⟩4.

It is worth noting the difference between adiabatic strokes
in the quantum and in the classical regime. While carrying out
an adiabatic stroke in a classical setting means that no heat
exchange occurs during the process, for quantum systems it
refers to the condition that the occupation populations of the
eigenstates remain constant. This difference in the definition
implies a difference in the timescale of the strokes. In classical
heat engines, the WM will be driven quickly to prevent the
system from relaxing and therefore exchanging heat with the
environment, while for QHEs one needs to drive it quasistati-
cally based on the adiabatic theorem. The performance of the
engine is characterized by the work output W = We + Wc and
the efficiency η = |W |

Qh
= 1 + Qc

Qh
. By convention, we chose the

variation of energy to be negative when the WM loses en-
ergy, which means that the engine produces extractable work
when W < 0. Like in a conventional quantum heat engine, we
choose the trap frequency at the end of the compression to be
larger than the initial frequency, ω f > ωi; however, g f can be
larger or smaller than gi.

III. ENGINE PERFORMANCE IN THE ADIABATIC LIMIT

A. Noninteracting limit and statistical influence
on the performance

Before examining the effects of the interactions in the
working medium, let us first consider the noninteracting
limit (gi = g f = 0) to outline the influence of the statistical
properties on the engine performance. Below we consider
distinguishable particles and indistinguishable bosons, where
their respective statistics leads to a difference in the degener-
acy of the energy levels given by

d (En) =
∑

n1

...
∑

nN

δEn,h̄ω(
∑N

j=1 n j+ 1
2 ), (2)

where δa,b is the Kronecker symbol. We illustrate this in
Figs. 2(a) and 2(b) for two and three particles systems and un-
surprisingly the number of states for a given energy is higher
for distinguishable particles. In fact, the gap between these
two distributions increases exponentially with the number of
particles. The probability for N indistinguishable bosons to be
at the same energy is therefore higher than for N distinguish-
able particles and this increases with the number of particles.
In particular, indistinguishable bosons will most likely stay in
the ground state and the probability for a boson to transition
to an excited state will be small for low temperatures. As a
consequence, the performance of an engine realized with non-
interacting bosons will be limited in terms of work output in
the temperature regimes of our interest (which corresponds, as
we will see later, to the temperature regime where interactions
lead to interesting behaviors). The respective work output of
the Otto-cycle of noninteracting bosons and distinguishable
particles as a function of the number of particles is shown
in Fig. 2(c). As expected, the work output for distinguishable
particles increases linearly and from physical arguments one
can expect the work output for bosons to be sub-linear. How-
ever, in Fig. 2(c), one can see that the behavior is more than
sub-linear and it, in fact, reaches a plateau for N ! 3. This
means that the mean occupations of the energies for bosons at
the hot and cold temperatures become so similar that adding
particles only contributes negligibly to the work output. Given
this drastically different behavior in the noninteracting limit,
let us next study distinguishable particles and indistinguish-
able bosons in the presence of interactions.

B. Two-particle working medium

We now take account of the interaction by considering
first the two-particle case (N = 2). The Hamiltonian can be
solved by introducing the center of mass coordinate X = x1+x2√

2
and the relative coordinate x = x1−x2√

2
, which allows one to
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量子コンピュータとHPC

• シームレスに使える統合環境 

• Supercomputer + GPU + FPGA + QC + … 

• 量子計算におけるHPCの重要性 

• 量子回路シミュレーション 

• 量子誤り訂正・誤り抑制 

• 量子コンパイラ・量子回路最適化 

• 初期量子状態の準備 

• 量子コンピュータ間の通信
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量子とHPCが融合した未来を共に、SQAI
SQAI: Driving Innovation Through Quantum and HPC Fusion

05. Quantum HPC

Design and Development of Quantum HPC Hybrid System
R&D Organization Objectives of this project

Project Leader

Academia 

Industries

Mitsuhisa Sato (RIKEN R-CCS)

The Univ. of Tokyo / Keio Univ. / RIKEN
Oxford Quantum Circuits Limited / 
NVIDIA Corporation / AZLAB, Inc.

• Design of API and programming model for comprehensive 
quantum and HPC programming

• Establishment of an automatic and efficient general-
purpose quantum circuit optimization technology platform

• The platform is to be provided for verification of 
quantum/classical optimization, gate-based quantum 
computing, and quantum-HPC machine learning 
computations.Characteristics of this project

• Design of quantum and HPC hybrid computing system
• Programming models and frameworks for quantum-HPC 

hybrid computing: The programming system should enable 
users to use the quantum-HPC hybrid platform seamlessly.

• Quantum simulation on HPC: large-scale supercomputers 
such as Fugaku, GPU clusters, and multi-FPGA boards

• Optimization of Quantum circuits, algorithms, and compiler
• Optimization and cooperation of quantum computer and 

HPC at the level of control and measurement to quantum 
devices

Research Highlights
Programming models and framework 
for quantum-HPC hybrid computing

• Research and design of system software to integrate 
quantum computers with supercomputers

• As the number of qubits increases, the computational 
requirements for error mitigation and circuit optimization 
also increase, and collaboration between quantum 
computers and HPC is crucial

• We designed and implemented a prototype of a remote 
procedure call mechanism, which allowed us to execute 
quantum computing simulations on  GPU servers 
connected through a local area network from HPC systems

• We are investigating the software stack for the integration 
of  quantum computers and HPC through remote procedure 
call with the scheduling methods of both quantum and HPC

• Programming models including workflow programming and 
single program multiple process (SPMP) model

Fast quantum computer simulator by 
FPGA device

Quantum–classical coordination and 
optimization at the quantum device 
control/readout level

• In the development of processors for optical quantum 
computers, a timing synchronization system that is 
necessary for processing non-classical light is being 
constructed.

• We are investigating efficient simulation methods for 
Gottesman-Kitaev-Preskill (GKP) states and optimizing 
pulse sequences for error correction purposes.

• Efficient simulation methods for high-dimensional harmonic 
oscillators to facilitate the simulation of large-scale quantum 
states are also in development.

                     
              

              

           

             

                   
          

                  
         

            
    

               
                

           
                

    

      

• We are working on the implementation of a quantum 
computer simulator by using an FPGA (Field Programmable 
Gate Array) device.

• The state vector method can accurately simulate the 
operation of a quantum computer, but it requires vast 
amounts of memory and access bandwidth.

• Our design using FPGA devices can accommodate a large 
amount of memory by connecting multiple SSDs, enabling 
efficient computation of quantum gate operations.

• We are developing a quantum computer simulator using an 
FPGA board called Trefoil.

• In the implemented FPGA circuitry, we have realized 
operations of H gate, S gate, CNOT gate, and 2-qubit 
gates.

• By using four boards, we can achieve parallel processing 
with 128 instances, allowing for the simulation of 34 qubits.

• To our best knowledge, our design using FPGA devices for 
quantum computer 
simulation is 
new, especially 
because of 
utilizing 
multiple 
SATA disks.



共創の場形成支援プログラム　(量子技術分野)

• SQAI: サスティナブル量子AI研究拠点 

• 2022年10月から2032年3月まで10年間 

• 量子コンピュータとHPCを統合した持続可能な量子AI基盤の創出 

•参画機関・参画企業 

• 東京大学、慶應大学、理研、OIST、シカゴ大、川崎市、 

Amoeba Energy、SCSK、Quemix、京セラ、JSR、 

TIER IV、TOPPAN、トヨタ、NSSOL、IBM、 

SMFG、日本総研、バイトルヒクマ、BIPROGY、 

blueqat、みずほR&T、三菱ケミカル、MUFG、 

村田機械、オレンジテクラボ、OQC、NVIDIA、 

qBraid、富士フィルム、博報堂DY、 

三井化学、アズラボ、デロイト、 

デンソー、J-Power、三菱電機、 

PSNRD、長大 

• 39機関 (2024年9月現在)
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量子AI・融合HPC基盤

サスティナブルな
好循環を社会実装

サスティナブルAI
量子HPC

量子埋め込み

新規課題へのバックキャスト

新たな社会的ターゲット

新産業創出

課題解決

量子機械学習

量子シミュレーション

量子最適化



量子コンピュータとHPCの統合による量子AI基盤

• 「サスティナブルAI」とは 

• 少数データ、少数パラメータでも高い性能を示す量子機械学習と量子シミュレーションや量子計

測データを組み合わせた量子AI技術 

• 従来のAI技術と比較して、計算量や消費電力を圧倒的に削減 

• エネルギーの不安なしに社会のいたるところで存分に活用 

• 拠点ビジョン ⇒ ３つのターゲット ⇒ ５つの研究開発課題
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サスティナブル量子
機械学習手法の創出

量子AIにむけた多体
問題量子シミュレー
ション手法の革新

量子HPC基盤の構
築と展開

ターゲット

・ エネルギーの不安なしに情報技術を存分に活用
   できる社会
・ 携帯端末にいたるまで量子技術が普及し数千万
   人の人々がその恩恵を受けられる社会
・ 量子AIに支えられた生産性革命や新産業創出が
   持続する社会

量子ソフトウェアとHPC・シミュレーション技術の
共創によるサスティナブルAIが拓く未来

ビジョン 研究開発課題

1. 量子機械学習による高汎化技術と最適化の統合 (量子機械学習)

2. 物質・材料科学のための多体問題量子シミュレーション
    手法開発 （量子シミュレーション)

3. 量子埋め込みに基づく量子古典融合アルゴリズム開発
    (量子埋め込み)

4. 量子機械学習/量子シミュレーションの高度化のための
    最適化技術開発 (量子最適化)

5. CPU〜GPU〜QPUの統合による量子HPC基盤構築
    (量子HPC)



量子埋め込み: 量子回路⇆古典コンピュータ

• 古典コンピュータの持っている 情報をどのように量子コンピュータに「埋め込む」のか 

• 量子コンピュータからの出力をどのように古典コンピュータに「埋め込む」のか 

• 新しい「データ構造」 

• テンソルネットワーク, ボルツマンマシン,…
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高精度な分子/固体/原子核のシミュレーションは材料開発や
原子力開発を大きく発展させることが出来ます。
しかし、こういった領域は量子力学が支配しているため、古典
コンピュータでは効率的に計算出来ません。そこで量子コン
ピュータに大きな期待が寄せられています。
このグループでは、こういった量子シミュレーションのために、
量子古典融合シミュレーションの共通基盤の整備・高度化と、
新しいシミュレーション手法開発を目指しています。

量子コンピュータの内包する莫大な表現空間を利用して、従来よりも低い訓練コストで高い汎化性能を持つ機械学習モ
デルの実現を目指します。また、量子シミュレーションや量子デバイスから得られる量子データを直接入力とする、新た
な機械学習手法を研究します。

従来のコンピュータが扱っているデータをどのように量子コンピュータに「埋め込む」のか。量子コンピュータからの出力を
どのように従来のコンピュータに「埋め込む」のか。これらは量子コンピュータとHPCの融合に向けた重要な研究課題です。
このグループでは、テンソルネットワークやニューラルネットワークなどのデータ表現を用いて、これらの研究課題に取り組
んでいます。そして、現代の社会課題に通用する強力な量子・古典ハイブリッドアルゴリズムの開発を目指します。

最適化問題の数理構造に適合するゲート型量子コンピュータ・量子アニー
リングマシン・イジングマシン等向けのアルゴリズム構築を実施します。
このグループでは、量子回路最適化アルゴリズムや機械学習を融合した量
子アニーリングによる最適化技術、実装量子コンピュータの制御信号最適
化技術、問題分割技術、統計力学的解析を活用して、量子機械学習や量子シ
ミュレーション、最適化技術の高度化を目指します。

多様な専門性、価値観を有する
研究メンバーが集い、
拠点ビジョンの実現にむけて
5つの研究開発課題に取り組みます

量子機械学習

量子埋め込み

量子最適化

量子HPC量子シミュレーション

5つの研究開発課題

!
"

#
$

%
古典コンピュータ、スーパーコンピュータと量子コン
ピュータを階層的な構成をもって有機的に接続する
ためのアーキテクチャを検討します。
ユーザが問題解決のためのアルゴリズムを手軽に試
すことができ、かつスーパーコンピュータまでシーム
レスに実行できるフレームワークとプログラミング
環境を開発する

課題リーダー 藤堂 眞治
[東京大学大学 院理学系研究科 教授]

課題リーダー 寺師 弘二
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テンソルネットワーク表現

• 量子多体系の量子状態 

• MPS, Tree TN, MERA, PEPS 

• 統計力学模型の分配関数 

• テンソル繰り込み群 

• テンソルネットワークによる機械学習 

• ニューラルネットワーク・生成モデルの圧縮 

• 階層構造の情報圧縮 

• 同次多項式表現 

• 偏微分方程式のTNシミュレーション
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FIG. 1. (a) Graphical representation of the weight matrix W in a
fully connected layer. The blue circles represent neurons, e.g., pixels.
The solid line connecting an input neuron xi with output neuron
y j represents the weight element Wji. (b) MPO factorization of the
weight matrix W . The local operators w(k) are represented by filled
circles. The hollow circles denote the input and output indices, il and
jl , respectively. Given ik and jk , w(k)[ jk, ik] is a matrix.

different kernels are used to extract different features. A
graphical representation of W is shown in Fig. 1(a).

Usually, the number of elements or neurons, Nx and Ny, are
very large, and thus there are a huge number of parameters
to be determined in a fully connected layer [9]. The convo-
lutional layer reduces the variational parameters by grouping
the input elements into many partially overlapped kernels, and
one output element is connected to one kernel. The number of
variational parameters in a convolutional layer is determined
by the number of kernels and the size of each kernel. It could
be much less than that in a fully connected layer. However, the
total number of parameters in all the convolutional layers can
still be very large in a deep neural network which contains
many convolutional layers [10]. To train and store these
parameters raises a big challenge in this field. First, it is time
consuming to train and optimize these parameters, and may
even increase the probability of overfitting. This would limit
the generalization power of deep neural networks. Second,
it needs a big memory space to store these parameters. This
would limit its applications where the space of hard disk is
strongly confined; for example, on mobile terminals.

There are similar situations in the context of quantum in-
formation and condensed-matter physics. In a quantum many-
body system, the Hamiltonian or any other physical operator
can be expressed as a higher-order tensor in the space spanned
by the local basis states [33]. To represent exactly a quantum
many-body system, the total number of parameters that need
to be introduced can be extremely huge, and should in prin-
ciple grow exponentially with the system size (or the size of
each “image” in the language of neural network). The matrix
product operator (MPO) was originally proposed in physics to
characterize the short-range entanglement in one-dimensional
quantum systems [34,35], and is now a commonly used
approach to represent effectively a higher-order tensor or
Hamiltonian with short-range interactions. Mathematically, it
is simply a tensor-train approximation [36,37] that is used to
factorize a higher-order tensor into a sequential product of
the so-called local tensors. Using the MPO representation, the
number of variational parameters needed is greatly reduced

since the number of parameters contained in an MPO just
grows linearly with the system size. Nevertheless, it turns
out that to provide an efficient and faithful representation
of the systems with short-range interactions whose entangle-
ment entropies are upper bounded [38,39] or, equivalently,
the systems with finite excitation gaps in the ground states.
The application of MPOs in condensed-matter physics and
quantum information science has achieved great successes
[40,41] in the past decade.

In this paper, we propose to solve the parameter problem in
neural networks by employing the MPO representation, which
is illustrated in Fig. 1(b) and expressed in Eq. (5). The starting
point is the observation that the linear transformations in a
commonly used deep neural network have a number of similar
features as the quantum operators, which may allow us to
simplify their representations. In a fully connected layer, for
example, it is well known that the rank of the weight matrix
is strongly restricted [42–44] due to short-range correlations
or entanglements among the input pixels. This suggests that
we can safely use a lower-rank matrix to represent this layer
without affecting its prediction power. In a convolutional
layer, the correlations of images are embedded in the kernels,
whose sizes are generally very small in comparison with the
whole image size. This implies that the “extracted features”
from this convolution can be obtained from very local clusters.
In both cases, a dense weight matrix is not absolutely neces-
sary to perform a faithful linear transformation. This peculiar
feature of linear transformations results from the fact that the
information hidden in a data set is just short-range correlated.
Thus, to accurately reveal the intrinsic features of a data set,
it is sufficient to use a simplified representation that catches
more accurately the key features of local correlations. This
motivates us to adopt MPOs to represent linear transformation
matrices in deep neural networks.

There have been several applications of tensor network
structures in neural networks [37,45–50]. Our approach dif-
fers from them by the following aspects: (1) It is physically
motivated, emphasizes more on the local structure of the
relevant information, and helps to understand the success of
deep neural networks. (2) It works in the framework of neural
networks, in the sense that the multiple-layer structure and
activation functions are still retained and the parameters are
entirely optimized through algorithms developed in neural
networks. (3) It is a one-dimensional representation, and is
flexible to represent the linear transformations including both
the fully connected layers and the entire convolutional layers.
(4) It is also used to characterize the complexity of image data
sets. (5) A systematic study has been done. These issues will
become clear in the following sections.

The rest of the paper is structured as follows. In Sec. II,
we present the way the linear layers can be represented by
MPO and the training algorithm of the resulting network. In
Sec. III, we apply our method systematically to five main
neural networks, including FC2, LeNet-5, VGG, ResNet, and
DenseNet on two widely used data sets, namely, MNIST and
CIFAR-10. Experiments on more data sets can be found in
Sec. II. A in the Supplemental Material (SM) [51]. Finally, in
Sec. IV, we discuss the relation with previous efforts and the
possibility to construct a framework of neural networks based
on the matrix product representations in the future. In the SM
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correlations, it is still highly correlated in space because the fine grid 
dependence is repeated.

Truncating the Schmidt decomposition in equation (2) approxi-
mates ui in an orthonormal time-dependent basis that evolves with 
the fluid flow to optimally capture spatially correlated structures. 
This is in contrast to classical scientific computing techniques 
(implemented through, for example, finite-difference or spectral 
methods) where the bases are structure-agnostic; that is, they are 
chosen a priori and disregard any structure in the solution.

We first apply the decomposition in equation (2) to DNS solu-
tions of the INSE (equation (7)) for the TDJ shown in the top row of 
Fig. 2a. The TDJ comprises a central jet flow along the x direction, 
and Kelvin–Helmholtz instabilities in the boundary layer of the jet 
eventually cause it to collapse (see equations (9)–(15) for the initial 
flow conditions). We decompose each velocity component accord-
ing to equation (2), which is an exact representation if d(n) = Γ2D(n) 
with (for details, see Supplementary Section 2)

Γ
�%(O) = NJO(�O �/−O)� 	�


Figure 1b shows the Schmidt numbers d99(n, t) such that equation 
(2) represents the DNS solutions for the velocity fields with 99% 

accuracy in the L2 norm (more details on the Schmidt coefficients 
are provided in Supplementary Section 1). We find that d99(n, t) are 
well below their maximal values Γ2D(n) for n > 1. More specifically, 
we define ȕ

��

= NBY E

��

(O U) as the maximal value of d99 for all n 
and time steps. We obtain χ99 = 25, and the interscale correlations 
captured by equation (2) with E(O) = NJO

(
Γ

�%(O) ��
)
 are shown 

by the blue-shaded area M in Fig. 1b. d99(n, t) is entirely contained 
within this blue area. Note that the Schmidt numbers are shown on 
a logarithmic scale in Fig. 1b, and thus the area M is much smaller 
than the area D corresponding to DNS.

We obtain qualitatively similar results for the DNS solutions 
to the TGV in 3D, where vortex stretching causes a single, large, 
ordered fluctuation to collapse into a turbulent flurry of small-scale 
structures (see the top row in Fig. 3a for visualization and equation 
(16) in the Methods for the initial flow conditions). In three spatial 
dimensions, the representation in equation (2) is exact if d(n) equals 
(Supplementary Section 2)

Γ
�%(O) = NJO (�O �/−O)� 	�


The Schmidt numbers d99(n, t) resulting in a 99% accurate represen-
tation of the DNS solutions are shown in Fig. 1c. We find χ99 = 207, 
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Fig. 2 | 2D temporally developing jet. Dynamical simulation of the INSE in 2D for a planar jet streaming along x with Re!=!1,000, as defined in the Set-up 
of numerical experiments section in the Methods. a, Snapshots of the vorticity and velocity fields taken at t/T0!=!0.25, 0.75, 1.25, 1.75 (left to right). 
Red corresponds to positive vorticity (counter-clockwise flow) and blue to negative vorticity (clockwise). The top row corresponds to DNS results on 
a quadratic 210!×!210 grid (cf. Fig. 1a). Rows 2–4 are MPS results with different maximal bond dimensions χ. The bottom three rows are for URDNS on 
quadratic grids, as indicated. b, Reynolds stress τ12 (equation (14)) between the streamwise and cross-stream directions as a function of time and y 
coordinate. Red (blue) corresponds to positive (negative) stress.
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量子埋め込み: 量子回路→テンソルネットワーク

• 量子回路からテンソルネットワークへの変換は容易 

• 高性能なテンソルネットワークシミュレーター 

• テンソルネットワーク縮約順序の最適化 

• MCMCサンプリングとの組み合わせ 

• 量子誤り訂正 

• TNデコーダーとベイズ推定によるノイズモデル予測 

• マルチコントロールゲートのテンソルネットワークと分解 

• 系統的な分解法の提案、Tゲート数の最適化 

•  「量子状態」からTNへの変換は非自明 

• TNトモグラフィー 

• 量子メモリ、量子長距離通信
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FIG. 1: Rotated surface code with d = 5. The number
of physical qubits and stabilizer generators is 25 and 24,
respectively. This figure only shows the physical qubits
but not the qubits for syndrome measurements.

encoded code states are defined by the stabilizer states,
and the code space is the Hilbert space restricted by the
stabilizers. The code states |ÂÍ and code space C are
defined as the

|ÂÍ œ C ≈∆ ’gi œ Sg, gi |ÂÍ = |ÂÍ . (4)

If the number of stabilizer generators is n≠k, the dimen-
sion of the restricted Hibert space of the stabilizer code
is 2k. Therefore, the code states can represent k logical
qubits, which encode the original k-qubit states.

To correct the error, we have to get some information
from codes. We focus on the parity change in the eigen-
values of stabilizer generators so as not to destroy the
quantum states after measurements. Such parity check
measurements are called syndrome measurements. The
syndrome measurements are executed using one ancilla
qubit for each stabilizer generator. The decoding process
of the stabilizer code is as follows:

1. Error detection: Obtain the results of the syndrome
measurement of the stabilizer generators.

2. Error estimation: Based on the results, the decod-
ing algorithm calculated by a classical computer is
used to estimate where the error occurred.

3. Error correction: Based on the estimated errors,
correct the error by operating to erase the errors or
update the Pauli frame [40].

B. Surface code

The surface code, a type of stabilizer code, is a leading
candidate for QEC in future FTQC due to its high per-
formance. One type of surface code is represented like
Fig. 1 [41]. Its stabilizer generators can be written by
only the product of X or Z. In Fig. 1, the blue area rep-
resents the product of X, and the white area represents
the product of Z. Let the lattice be L ◊ W , and its code
distance is d = min(L, W ), which means the code can
detect the d ≠ 1 errors. The number of qubits is LW to

(a)

(b)

(c)

FIG. 2: (a) TN representation of projectors
�±g = (I ± g)/2. (b) TN representation of d = 5 initial
code state |0ÍL. It can be made from |0Í¢25 by
operating the X stabilizer projectors. It is because
|0Í¢25 is already stabilized by the products of Z. (c) A
conceptual picture of the TN diagram of the likelihood
p(m|–) calculation of d = 3 surface code.

represent the code and LW ≠ 1 for ancilla qubits used in
syndrome measurements. Their stabilizer generators are
represented by the product of two or four Pauli opera-
tors, and the physical qubit on which they act is spatially
localized. Consequently, the surface code can be imple-
mented with qubits arranged in a two-dimensional grid,
where operations are performed on adjacent qubits. That
is why we can simulate them using the TN e�ciently.

C. Tensor network simulation of surface code

The TN simulation is one of the most valuable and
powerful numerical methods [42]. It is the method
for e�ciently compressing the Hilbert space of quan-
tum systems. To represent the state of quantum many-
body systems, tensors, which are multidimensional ar-
rays, are used and connected by contraction in the TN.
By using the representative class of TNs, PEPS [43] and
MPS-MPO [44], the surface code can be simulated e�-
ciently [20].

To simulate the surface code, TN representation of the
projector onto the eigenspace of ±1 eigenvalue of stabi-
lizer generators is needed. It can be written as (I ± g)/2
for each stabilizer generator g, and it is represented by the
tensors with bond dimension two as shown in Fig. 2(a).
When we label the horizontal leg indices by –, the TN
represent the product of I for – = 0, X or Z for – = 1,
and zero otherwise. All legs have bond dimension 2, so
the representation is very e�cient.

By using the projectors �±g = (I ± g)/2 for g œ Sg,

Kobori, ST (2024)



量子埋め込み: テンソルネットワーク→量子回路

• TNから量子回路への変換は非自明 

• 行列積状態から量子回路 

• テンソルネット量子状態の準備 

• ツリーテンソルネットワークへの一般化 

• TN量子シミュレーション 

• TNの実時間・虚時間発展の埋め込み 

• 量子-量子インターフェース
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Encoding of tree tensor networks into shallow quantum circuits
Shota Sugawara*・Tsuyoshi Okubo・Synge Todo（University of Tokyo）

Initialization of Quantum Circuits using 
Tensor Networks (TN)

Tree Tensor Networks(TTN)
Advantages same as MPS
• Efficient contraction using canonical form
• Scalability of computational cost

Advantages different from MPS
• Distance between any leaf nodes
• MPS : !(#)
• TTN : !(log # )

• Systems well-suited for representation with TTN:
• Systems with long-range correlations
• Two-dimensional systems
• Image data

1. Optimize the TN
2. Use TN for initializing the 

paremeterized quantum circuit
3. Optimize the PQC

Procedure flow

• The vanishing gradient problem observed during the execution of 
quantum variational algorithms

• Previous studies suggest that initializing quantum circuits with TN 
can avoid barren plateaus.

Barren plateau

• Stable gradients regardless of 
system size or circuit depth

Results of previous study

M. S. Rudolph. et al. 2022.

• The number of quantum gates required to accurately embed a TN 
with bond dimension ( into a quantum circuit increases 
exponentially with (.

• For MPS, there are methods to approximately embed them into 
shallow circuits, but no such methods have been devised for TTN.

Challenges

Proposed method

Workflow

(a)

! = 16 ! = 4 ! = 2

|"!,# >

Truncate
Convert   
to TTD

Disentangle

Contract and Truncate
(Merge and Penetrate algorithm)

!′ ≤ 16 !′ ≤ 4 !′ = 2

(e)

|"!$%,#& >

! = 2 ! = 2 ! = 2

(b)

|"!,' >

(c)

! = 2 ! = 2 ! = 2! = 2

$!

(d)

"!$%,# >= $!✝ "!,# >
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• Merge

Merge and Penetrate algorithm

SVDReshapeContract

• Penetrate

Contract

• Repeat following steps to obtain TTN-shape |*!"#,%& > from leaf nodes
• When tensors are connected along the 2-axis → Merge
• When tensors are connected along the 1-axis → Penetrate

Future prospects

• The SVD decomposition in the Penetrate algorithm is locally 
optimal but not globally optimal.

• Although computational complexity increases, considering larger 
nodes for decomposition could improve accuracy.

Applications
• VQE for 2D quantum systems
• Generative models for images

Results

• Achieving accuracy comparable to methods used in prior research 
with MPS.

• The cause of lower convergence accuracy is information loss in the 
Penetrate algorithm.

What we want to do?

Mapping

The generated quantum circuit composed of two-qubit gates
(In the case of & = 2)

$' $% $(

Computational complexity
• Contract and Truncate (Merge and Penetrate algorithm)
• Penetrate algorithm: ! (' per iteration
• Number of penetrations per node︓!(log#)

!(# log# (')

• Canonicalization of TTN
!(#(())

• Overall
! max(#((), # log# (' )

System size︓#
Maximum bond dimension︓(

# of layers︓0

Note: !(#(*) for MPS

The original TTN |"(,# >

Integration with 
Decomposition by Optimization algorithm
• Accuracy improvement through integration confirmed for MPS.
• Achieving better accuracy with shallower circuits.

Improvement of the Penetrate algorithm
M. S. Rudolph. et al. 2022.

S. Cheng. et al. 2019.

Why	TTD?
TTD︓Tree	Tensor Disentangler

.(,* >= 1( 0 >⨂,
1(✝ .(,* >= 0 >⨂,

All tensors have the shape (2,2,2,2)
Precisely convertible to quantum circuits

# of required quantum gates: !(0# log#)
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共創の場形成支援プログラム　(量子技術分野)

• SQAI: サスティナブル量子AI研究拠点 

• 量子コンピュータとHPCを統合した持続可能な量子AI基盤の創出 

• 5つの研究開発課題 

• 量子機械学習、量子シミュレーション、量子埋め込み、量子最適化、量子HPC 

• 参画機関・参画企業 

• 東京大学、慶應大学、理研、OIST、シカゴ大、川崎市、 

Amoeba Energy、SCSK、Quemix、京セラ、JSR、 

TIER IV、TOPPAN、トヨタ、NSSOL、IBM、 

SMFG、日本総研、バイトルヒクマ、BIPROGY、 

blueqat、みずほR&T、三菱ケミカル、MUFG、 

村田機械、オレンジテクラボ、OQC、NVIDIA、 

qBraid、富士フィルム、博報堂DY、 

三井化学、アズラボ、デロイト、 

デンソー、J-Power、三菱電機、 

PSNRD、長大 

• 39機関 (2024年9月現在)
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量子AI・融合HPC基盤

サスティナブルな
好循環を社会実装

サスティナブルAI
量子HPC

量子埋め込み

新規課題へのバックキャスト

新たな社会的ターゲット

新産業創出

課題解決

量子機械学習

量子シミュレーション

量子最適化


