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Quantum-classical computational molecular design of 
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まずはじめに、量子力学が登場する機械学習問題を紹介。
このような問題には、やはり量子計算機が有効だろうか・・・？
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uations of 2n possible deuterated molecules. Moreover,
as a practical consideration, increasing the amount of
deuterium in molecules significantly increases the cost of
chemical synthesis [8, 9], thus deuterated molecules pro-
duced by this design should not only exhibit high quan-
tum e�ciency but must also be synthesizable. Previous
investigations have shown that machine learning is orders
of magnitude faster than ab initio calculation for pre-
dicting desired properties and synthesizability can also
be integrated into a training model [12, 13], therefore,
here we propose the use of a machine learning model to
accelerate the discovery of optimally deuterated OLED
emitters [14].

Such a machine learning model, trained to predict
molecular properties based on molecular structure, can in
principle generate data that can be enhanced by hybrid
quantum-classical variational quantum optimization al-
gorithms (VQAs) such as the Quantum Approximate Op-
timization Algorithm (QAOA) [15] and the Variational
Quantum Eigensolver (VQE) [16]. These algorithms are
suitable for execution on current noisy quantum hard-
ware since they execute a short, parameterized quantum
circuit on the devices while parameters are optimized us-
ing a classical outer loop to enable the discovery of high-
quality solutions by the quantum circuit.

In this study, we develop a combined quantum chem-
istry, machine learning and quantum optimization ap-
proach to discover an optimal, synthesizable deuterated
molecule of Alq3 (a well-known OLED emitter [17, 18])
possessing high quantum e�ciency. Our approach in-
volves a sequence initiated by the evaluation of the
Franck-Condon factors of various deuterated Alq3 deriva-
tives with classical computational chemistry methods.
This step is followed by the selection of a suitable predic-
tion model via machine learning performed on classical
architecture. The sequence terminates with the use of an
Ising Hamiltonian derived from this machine learning ap-
proach in both constrained and unconstrained quantum
optimization procedures involving the use of the VQE
and QAOA algorithms to predict the optimal deuterated
molecule.

II. METHODS

A. Computational Methodology

Alq3 (tris(8-hydroxyquinolinato)aluminium) is a sta-
ble metal chelate complex wherein aluminum is bonded
to three 8-hydroxyquinoline ligands, as shown in Figure
1. For every ligand, there are six hydrogen atoms which
can be replaced by deuterium isotopes [8]. By assum-
ing that every ligand has the same deuterated structure
and setting every hydrogen atom and its deuterium as
bit values of 1 and 0 respectively, the combinatorial op-
timization required for discovering a desired deuterated
Alq3 molecule with high emission quantum e�ciency can
be viewed as a problem involving searching for an op-

FIG. 1. Structure of Alq3 and the numbering of the 6 hydrogen
atoms in the 8-hydroxyquinoline ligand.

FIG. 2. Flowchart for a hybrid quantum-classical quantum
chemistry, machine learning and quantum optimization ap-
proach for identifying optimally deuterated Alq3 derivatives
with high quantum e�ciencies.

timal bitstring represented by 6 qubits on a quantum
computer.

Figure 2 shows a flowchart illustrating the hybrid
quantum-classical procedure combining quantum chem-
istry, machine learning and quantum optimization to
identify deuterated Alq3 molecules possessing desired
quantum e�ciency. This procedure begins with quantum
chemistry calculations with a classical computer to ob-
tain the quantum e�ciencies of a set of deuterated Alq3
molecules. Results obtained from these calculations are
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calculations. If SA  is less than a threshold value of 0.95, a randomly chosen -⃑(0)  possessing one 

deuterium atom and its reverse feature vector is added to the training data to retrain the unconstrained 

QUBO model. The procedure repeats by choosing -⃑(0)  while gradually increasing the number of 

deuterium atoms (i.e. the bit value of 0) in the feature vector, until SA surpasses the threshold value.  

C. Construction of the Constrained Prediction Model  

Upon creating an unconstrained QUBO model to accurately predict the FC values, we then build a 

new constrained QUBO model which includes a penalty term added to the unconstrained QUBO model: 

8TUVWX)0Y(Z9)[\ = 8TUV])WX)0Y(Z9)[\ + ^_8TUV`[)ZaYb               (5) 

where ^_ is a weighting parameter set to 10. The penalty QUBO model is also obtained using the FM 

predictor with a new dataset corresponding to the feature vector -⃑(0). The new dataset has a similar format 

to that shown in Figure 3. The -⃑(0) in the new dataset also represent all 64 deuterated molecules and the 

corresponding target values 2(0) are generated by 

c(+9) = (+9 − +_)A                                  (6) 

where +9 is the number of deuterium atoms (corresponding to bit value 0) in the i-th of -⃑(0) and +_ is a 

specific integer value with 0 ≤ +_ ≤ 6. Thus, the 2(0) has minimum of value 0 when +9 = +_. Note that in 

order to make the values in 8TUV])WX)0Y(Z9)[\  and 8TUV`[)ZaYb possess the same order of magnitude, 

89: and 899 in 8TUV])WX)0Y(Z9)[\ are scaled by dividing the minimum value of 89: and 899 into all 89: 

and 899.   

 

D. Quantum Optimization Methodology   

In order to perform quantum optimizations on quantum simulators and devices using the VQE and 

QAOA algorithms, both unconstrained and constrained QUBO models are converted into a spin-based 

Ising model Hamiltonian (denoted g9) which takes a value of +1 or -1 [28]: 

h(g) = ∑ ℎ9
=
9>; g9 + ∑ ∑ j9:

=
:>9%; g9g:

@
9>;                             (7) 

where g9 is the Pauli Z operator acting on the i-th qubit, and the relation between 69 in eq (1) and g9 is 

given by  
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Here, Zj is the Pauli Z operator applied to a qubit j, and I is
the identity. The state preparation circuit defined in Eq. (1)
has depth ≈pD, where D is the maximum vertex degree of
the graph G and p is the QAOA level [8]. To keep the
circuit depth and the number of variational parameters
small, below, we focus on the regime when p and D are
constants or slowly growing functions of n.
Our first result is an upper bound on the maximum

variational energy attained by level-p states. Namely, we
show that for any constant D ≥ 3 and all large enough n
there exists a degree-D graph G with n vertices such that

hψðβ; γÞjCjψðβ; γÞi
Cmax

≤
5

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p

3D
ð3Þ

for any β; γ ∈ Rp as long as p<ð1=3log2n−4ÞðDþ1Þ−1.
This result severely limits the performance of the QAOA
with any constant level p independent of n. Indeed, the
right-hand side of Eq. (3) is approximately 5=6 ≈ 0.833 for
large vertex degree D. For comparison, the best-known
classical algorithm for MaxCut due to Goemans and
Williamson [9] achieves the approximation ratio ≈0.878
on an arbitrary graph. Thus, the QAOAwith a constant level
p cannot outperform classical algorithms. We note that
upper bounds on the QAOA approximation ratio were
previously known only for p ¼ 1 [3]. We refer to Ref. [10]
for numerical studies of the QAOA applied to MaxCut.
Similar concerns about limitations of the QAOA have

previously been voiced by Hastings [11], who showed
analytically that certain local classical algorithms match
the performance of the level-1 QAOA for Ising-like cost
functions with multispin interactions. Hastings also
gave numerical evidence for the same phenomenon for
MaxCut with p ¼ 1 and argued that this should extend to
p > 1 [11].
QAOA states possess a certain symmetry that plays a

crucial role in our analysis. Namely, the state jψðβ; γÞi is
invariant under a global spin flip:

X⊗njψðβ; γÞi ¼ jψðβ; γÞi:

Indeed, the Hamiltonians B and C commute with the
symmetry operator X⊗n, while the initial state jþni is a
þ1 eigenvector of X⊗n. More generally, let us say that an
n-qubit state jψi isZ2 symmetric if it is aþ1 eigenvector of
X⊗n. Our proof of Eq. (3) combines two observations:
(i) The symmetry forces good variational states to be highly
entangled, and (ii) low-depth circuits are not capable of
preparing highly entangled states.
To elaborate on the role of the Z2 symmetry, suppose

x ∈ f0; 1gn is an optimal cut such that Cmax ¼ CðxÞ. Let x̄
be the bitwise negation of x. Note that Cðx̄Þ ¼ CðxÞ.

Although the state jxi has no entanglement whatsoever, its
Z2-symmetric version ðjxiþjx̄iÞ=

ffiffiffi
2

p
is a highly entangled

state, locally equivalent to the n-qubit Greenberger-Horne-
Zeilinger (GHZ) state ðj0niþ j1niÞ=

ffiffiffi
2

p
, which cannot be

prepared by a low-depth circuit [5].
The fact that symmetry may prevent one from preparing

ground states of certain Hamiltonians by low-depth circuits
is well known in the theory of topological quantum order
under the name symmetry protection [12–14]. The bound
Eq. (3) asserts that the Hamiltonian C exhibits a strong
form of symmetry protection that extends to all states with
energy density above a certain constant threshold.
We shall now argue that for a suitable family of graphsG

all good variational states are qualitatively similar to the
GHZ state. Specifically, the results of Refs. [15–17] show
that for any constantD ≥ 3 there exists an infinite family of
bipartite degree-D graphs G such that

CðxÞ≡ jcutðxÞj ≥ hmin fjxj; n − jxjg ð4Þ

for any x ∈ f0; 1gn, where h is a constant satisfying

h ≥
D
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
ð5Þ

and jxj is the Hamming weight of x. Such graphs, known
as Ramanujan expander graphs, maximize the spectral gap
of their adjacency matrices among all D-regular graphs.
Random D-regular bipartite graphs are known to approach
the bound Eq. (5) with high probability [18].
Let G be a bipartite graph as above and xopt ∈ f0; 1gn be

an optimal solution of the MaxCut problem. For a bipartite
graph, Cmax ¼ CðxoptÞ ¼ jEj. Moreover, the optimal sol-
ution xopt is unique up to the bitwise negation and

CðxÞ þ Cðxopt ⊕ xÞ ¼ jEj ð6Þ

for all x ∈ f0; 1gn. Here, ⊕ denotes the bitwise XOR. Set
ϵ ¼ h=6 and consider a level-p QAOA state such that

hψðβ; γÞjCjψðβ; γÞi ≥ jEj − ϵn: ð7Þ

Let x be a random n-bit string sampled from the distribution
PðxÞ ¼ jhxjψðβ; γÞij2. Markov’s inequality and Eq. (7)
show that CðxÞ ≥ jEj − 2ϵn with a probability of at least
1=2. From Eq. (6), one infers that Cðxopt ⊕ xÞ ≤ 2ϵnwith a
probability of at least 1=2. Let distðx; yÞ ¼ jx ⊕ yj be the
Hamming distance between bit strings x and y. Combining
Eq. (4) and the bound Cðxopt ⊕ xÞ ≤ 2ϵn, one gets

min fdistðxopt; xÞ; distðxopt; xÞg ≤
2ϵn
h

¼ n
3

ð8Þ

with a probability of at least 1=2. This shows that the state
jψðβ; γÞi has a non-negligible weight on bit strings close to
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applied to the measurements obtained from VQE and QAOA calculations to correct the mean energy value. 

The parameter values in Ry and QAOA Ansätze are then calculated using the COBYLA optimizer. 6 

linearly-connected qubits were selected to reduce the influence of CNOT errors on the accuracy of results 

computed on the quantum device. Figure 5 show the architecture of the ibm_kawasaki device and the 

quantum circuit comprising the 6 chosen qubits (i.e. [0,1,2,3,5,8]) implementing the Ry Ansätze and QAOA 

with Å = 3. 

 

Fig 5. (a) The architecture of ibm_kawasaki 27-qubit quantum computer (b) the quantum circuits implemented on 

ibm_kawasaki for (b) VQE and (c) QAOA with p=3.   

 

E. Application of the binary search algorithm in the optimization calculations on quantum device 

Since one of the computational basis states must comprise the optimal bitstring, we can view the 

optimization problem of searching for the optimal bitstring as a problem involving determining the binary 

values of every qubit. This inspired us to suggest a new approach, illustrated in Figure 6, which applies 

the binary search algorithm to VQE and QAOA calculations to improve the accuracy on a quantum device. 

In this approach, VQE and QAOA calculations are first performed on all the 6 qubits with a loose 

optimization convergence criterion. Using the computed results, the probability of the output of 0 or 1 for 

every qubit is then calculated as:  

Å9_	ÑÖ	; = ÜÑáàâä	ãÑÖ	_	ÑÖ	;	Ñà	9-âç	éáèêâ
âÑâëí	ìîëäáÖìîàâ	ÜÑáàâä                               (13). 

For qubits with Å9_	ÑÖ	; larger than a threshold value denoted by ï, we determine the binary values of 

the qubits and construct a new Ising model Hamiltonian by omitting the terms of these related qubits. With 
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The quantum approximate optimization algorithm (QAOA) employs variational states generated by a
parameterized quantum circuit to maximize the expected value of a Hamiltonian encoding a classical cost
function. Whether or not the QAOA can outperform classical algorithms in some tasks is an actively
debated question. Our work exposes fundamental limitations of the QAOA resulting from the symmetry
and the locality of variational states. A surprising consequence of our results is that the classical Goemans-
Williamson algorithm outperforms the QAOA for certain instances of MaxCut, at any constant level. To
overcome these limitations, we propose a nonlocal version of the QAOA and give numerical evidence that
it significantly outperforms the standard QAOA for frustrated Ising models.
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Variational quantum optimization (VQO) has recently
received significant attention as a candidate application of
near-term quantum processors. The basic proposal is appeal-
ingly simple: The output state of a parameterized quantum
circuit is used as a variational wave function to minimize the
expected energy of a given Hamiltonian [1]. Depending on
the envisioned application, the Hamiltonian may govern
electronic interactions in amolecule ormaterial of interest [2]
or encode a classical cost function whose minimum is to be
approximated [3]. Rotation angles that define individual
gates in the state preparation circuit serve as variational
parameters. These parameters are adjusted via a classical
feedback loop that aims to minimize the expected energy.
The central question common to all VQO proposals is

whether the chosen variational class of states is expressive
enough to provide a good ground state approximation. Let
us point out two factors that can limit the expressive power
of VQO. First, the state preparation quantum circuit must
have a small depth to enable reliable implementation on
near-term noisy devices lacking error correction. This
means that highly entangled states such as the ground
state of Kitaev’s toric code [4] may be out of scope for near-
term VQO using gate-based devices and low-depth circuits
[5,6]. Second, the number of variational parameters in the
state preparation circuit must be small enough to enable
efficient energy minimization. While this is not a serious
concern for proof-of-principle experiments with a handful
of qubits, it is anticipated that large-scale VQO with an
extensive number of variational parameters may give rise to
intractable optimization problems, for example, due to the
barren plateau (vanishing gradient) effect [7].
In this Letter, we elaborate on the limitations of

VQO and establish formal no-go results for the quantum

approximate optimization algorithm (QAOA) [3]. Recall
that the QAOA aims to approximate the maximum
of a classical cost function CðxÞ that depends on
n binary variables, x ¼ ðx1;…; xnÞ. The cost function is
encoded into an n-qubit diagonal Hamiltonian C ¼P

x∈f0;1gn CðxÞjxihxj. The QAOA variationally maximizes
the expected energy of C over n-qubit quantum states of the
form [3]

jψðβ; γÞi ¼
Yp

a¼1

eiβaBeiγaCjþni; ð1Þ

where βa and γa are variational parameters, jþni is the
tensor product of n single-qubit states jþi¼ðj0iþj1iÞ=

ffiffiffi
2

p
,

and B ¼
Pn

j¼1 Xj is the transverse magnetic field operator.
The integer p, called the QAOA level, controls the
expressive power of the variational ansatz. Finally, the
QAOA outputs a bit string x obtained by preparing
the optimal variational state jψðβ; γÞi and measuring each
qubit in the standard basis. The expected value of CðxÞ
coincides with the variational energy hψðβ; γÞjCjψðβ; γÞi.
The performance of the QAOA is commonly quantified by
an approximation ratio defined as the ratio between the
maximum variational energy and the maximum value of the
cost function Cmax ¼ maxx CðxÞ.
A paradigmatic test case for the QAOA is the maximum

cut (MaxCut) problem [3]. Suppose G ¼ ðV; EÞ is a graph
with a set of n vertices V labeled by integers j ¼ 1;…; n
and a set of edges E. Given an n-bit string x, let cutðxÞ be
the set of edges ðj; kÞ ∈ E such that xj ≠ xk. The cost
function to be maximized is the cut size, CðxÞ ¼ jcutðxÞj.
The corresponding n-qubit Hamiltonian is

PHYSICAL REVIEW LETTERS 125, 260505 (2020)
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calculations. If SA  is less than a threshold value of 0.95, a randomly chosen -⃑(0)  possessing one 

deuterium atom and its reverse feature vector is added to the training data to retrain the unconstrained 

QUBO model. The procedure repeats by choosing -⃑(0)  while gradually increasing the number of 

deuterium atoms (i.e. the bit value of 0) in the feature vector, until SA surpasses the threshold value.  

C. Construction of the Constrained Prediction Model  

Upon creating an unconstrained QUBO model to accurately predict the FC values, we then build a 

new constrained QUBO model which includes a penalty term added to the unconstrained QUBO model: 
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where ^_ is a weighting parameter set to 10. The penalty QUBO model is also obtained using the FM 

predictor with a new dataset corresponding to the feature vector -⃑(0). The new dataset has a similar format 

to that shown in Figure 3. The -⃑(0) in the new dataset also represent all 64 deuterated molecules and the 

corresponding target values 2(0) are generated by 

c(+9) = (+9 − +_)A                                  (6) 

where +9 is the number of deuterium atoms (corresponding to bit value 0) in the i-th of -⃑(0) and +_ is a 

specific integer value with 0 ≤ +_ ≤ 6. Thus, the 2(0) has minimum of value 0 when +9 = +_. Note that in 

order to make the values in 8TUV])WX)0Y(Z9)[\  and 8TUV`[)ZaYb possess the same order of magnitude, 

89: and 899 in 8TUV])WX)0Y(Z9)[\ are scaled by dividing the minimum value of 89: and 899 into all 89: 

and 899.   

 

D. Quantum Optimization Methodology   

In order to perform quantum optimizations on quantum simulators and devices using the VQE and 

QAOA algorithms, both unconstrained and constrained QUBO models are converted into a spin-based 

Ising model Hamiltonian (denoted g9) which takes a value of +1 or -1 [28]: 

h(g) = ∑ ℎ9
=
9>; g9 + ∑ ∑ j9:

=
:>9%; g9g:

@
9>;                             (7) 

where g9 is the Pauli Z operator acting on the i-th qubit, and the relation between 69 in eq (1) and g9 is 

given by  
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model, the global minimum of constrained QUBO model can ����%��'

ck: . Since the more deuterium atoms in the Alq3 molecule, ����%��'

ck: and is 

PYZVIu^ [ST4]: ��<1263�@7=�;17=4-�+:2./4@�-.;,:2+.�?1@�����%��'

ck:  during the calculations

ck: data set

ck: data set

ck: the 

ck: same 

ck: with 

ck: data set

ck: the 

ck: (i.e. the number of

ck: of 

PYZVIu^ [ST5]: �;�/�6)2��26�<1.�4./<�1*6-�;2-.�7/�����%�	'

ck: having 

ck: .

ck: For performing optimization calculations

ck: to search the optimal deuterated Alq3 molecule on a ����%�
'

ck:  

ck: denote 

ck: either 

ck: )

ck: based Ising model Hamiltonian 

ck: with the relation between 69  in eq (1) and g9   ↵ ����%��'
�
����WNZVIn���p
�
����WNZVIn���p

C ¼ 1

2

X

ðj;kÞ∈E
ðI − ZjZkÞ: ð2Þ

Here, Zj is the Pauli Z operator applied to a qubit j, and I is
the identity. The state preparation circuit defined in Eq. (1)
has depth ≈pD, where D is the maximum vertex degree of
the graph G and p is the QAOA level [8]. To keep the
circuit depth and the number of variational parameters
small, below, we focus on the regime when p and D are
constants or slowly growing functions of n.
Our first result is an upper bound on the maximum

variational energy attained by level-p states. Namely, we
show that for any constant D ≥ 3 and all large enough n
there exists a degree-D graph G with n vertices such that

hψðβ; γÞjCjψðβ; γÞi
Cmax

≤
5

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p

3D
ð3Þ

for any β; γ ∈ Rp as long as p<ð1=3log2n−4ÞðDþ1Þ−1.
This result severely limits the performance of the QAOA
with any constant level p independent of n. Indeed, the
right-hand side of Eq. (3) is approximately 5=6 ≈ 0.833 for
large vertex degree D. For comparison, the best-known
classical algorithm for MaxCut due to Goemans and
Williamson [9] achieves the approximation ratio ≈0.878
on an arbitrary graph. Thus, the QAOAwith a constant level
p cannot outperform classical algorithms. We note that
upper bounds on the QAOA approximation ratio were
previously known only for p ¼ 1 [3]. We refer to Ref. [10]
for numerical studies of the QAOA applied to MaxCut.
Similar concerns about limitations of the QAOA have

previously been voiced by Hastings [11], who showed
analytically that certain local classical algorithms match
the performance of the level-1 QAOA for Ising-like cost
functions with multispin interactions. Hastings also
gave numerical evidence for the same phenomenon for
MaxCut with p ¼ 1 and argued that this should extend to
p > 1 [11].
QAOA states possess a certain symmetry that plays a

crucial role in our analysis. Namely, the state jψðβ; γÞi is
invariant under a global spin flip:

X⊗njψðβ; γÞi ¼ jψðβ; γÞi:

Indeed, the Hamiltonians B and C commute with the
symmetry operator X⊗n, while the initial state jþni is a
þ1 eigenvector of X⊗n. More generally, let us say that an
n-qubit state jψi isZ2 symmetric if it is aþ1 eigenvector of
X⊗n. Our proof of Eq. (3) combines two observations:
(i) The symmetry forces good variational states to be highly
entangled, and (ii) low-depth circuits are not capable of
preparing highly entangled states.
To elaborate on the role of the Z2 symmetry, suppose

x ∈ f0; 1gn is an optimal cut such that Cmax ¼ CðxÞ. Let x̄
be the bitwise negation of x. Note that Cðx̄Þ ¼ CðxÞ.

Although the state jxi has no entanglement whatsoever, its
Z2-symmetric version ðjxiþjx̄iÞ=

ffiffiffi
2

p
is a highly entangled

state, locally equivalent to the n-qubit Greenberger-Horne-
Zeilinger (GHZ) state ðj0niþ j1niÞ=

ffiffiffi
2

p
, which cannot be

prepared by a low-depth circuit [5].
The fact that symmetry may prevent one from preparing

ground states of certain Hamiltonians by low-depth circuits
is well known in the theory of topological quantum order
under the name symmetry protection [12–14]. The bound
Eq. (3) asserts that the Hamiltonian C exhibits a strong
form of symmetry protection that extends to all states with
energy density above a certain constant threshold.
We shall now argue that for a suitable family of graphsG

all good variational states are qualitatively similar to the
GHZ state. Specifically, the results of Refs. [15–17] show
that for any constantD ≥ 3 there exists an infinite family of
bipartite degree-D graphs G such that

CðxÞ≡ jcutðxÞj ≥ hmin fjxj; n − jxjg ð4Þ

for any x ∈ f0; 1gn, where h is a constant satisfying

h ≥
D
2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
ð5Þ

and jxj is the Hamming weight of x. Such graphs, known
as Ramanujan expander graphs, maximize the spectral gap
of their adjacency matrices among all D-regular graphs.
Random D-regular bipartite graphs are known to approach
the bound Eq. (5) with high probability [18].
Let G be a bipartite graph as above and xopt ∈ f0; 1gn be

an optimal solution of the MaxCut problem. For a bipartite
graph, Cmax ¼ CðxoptÞ ¼ jEj. Moreover, the optimal sol-
ution xopt is unique up to the bitwise negation and

CðxÞ þ Cðxopt ⊕ xÞ ¼ jEj ð6Þ

for all x ∈ f0; 1gn. Here, ⊕ denotes the bitwise XOR. Set
ϵ ¼ h=6 and consider a level-p QAOA state such that

hψðβ; γÞjCjψðβ; γÞi ≥ jEj − ϵn: ð7Þ

Let x be a random n-bit string sampled from the distribution
PðxÞ ¼ jhxjψðβ; γÞij2. Markov’s inequality and Eq. (7)
show that CðxÞ ≥ jEj − 2ϵn with a probability of at least
1=2. From Eq. (6), one infers that Cðxopt ⊕ xÞ ≤ 2ϵnwith a
probability of at least 1=2. Let distðx; yÞ ¼ jx ⊕ yj be the
Hamming distance between bit strings x and y. Combining
Eq. (4) and the bound Cðxopt ⊕ xÞ ≤ 2ϵn, one gets

min fdistðxopt; xÞ; distðxopt; xÞg ≤
2ϵn
h

¼ n
3

ð8Þ

with a probability of at least 1=2. This shows that the state
jψðβ; γÞi has a non-negligible weight on bit strings close to
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(s=1: H、 s=0: D) 

Prediction:  Use the model to compute the optimal set of D, 
under the constraint #D ≤ 3.

データ(原子配置)から発光効率を計算
する量子計算機をデザインできれば
尚嬉しい



Quantum Generative Model with Optimal Transport, 
Tezuka, Uno, Yamamoto, arXiv, 2022

新奇量子状態を探索するための量子生成モデルの構築法

データ x が量子状態。温度や相互作用強度により、色々な
量子状態が発現している。機械学習で、この発現プロセスを
模倣する量子計算機をつくれないか？



機械学習 教師あり学習

教師なし学習

強化学習

⽣成モデル

GAN (Quantum Generative 
Adversarial Network)

VAE (Variational AutoEncoder)

Flow-based

beta-VAE, ICLR2017

Latent

Low dim.



Latent variables 𝑧!, 𝑧", 𝑧#, …

Training quantum states
| ⟩𝜓' , | ⟩𝜓( , | ⟩𝜓) , …

Q generative model

Unknown tunable
quantum system

Model quantum states
| ⟩𝜑' , | ⟩𝜑( , | ⟩𝜑) , …

approximate

An unknown yet tunable quantum system prepares a set of training 
quantum states (e.g., temperature or the interaction strength is tunable).

The goal is to construct a quantum generative model that outputs a set 
of quantum states approximating the set of training quantum states.

The resulting generative model is used 
to prepare a new quantum state (e.g. 
a state hard to realize experimentally).



Latent variables 𝑧!, 𝑧", 𝑧#, …

Training quantum states
| ⟩𝜓' , | ⟩𝜓( , | ⟩𝜓) , …

Q generative model

Unknown tunable
quantum system

Model quantum states
| ⟩𝜑' , | ⟩𝜑( , | ⟩𝜑) , …

approximate

𝜓$ %
𝜌 =&

$&!

%
𝑝$ 𝜓$ ⟨𝜓$|

𝜌

How to define the cost for measuring the gap between the two set? 
1
𝑀 | ⟩𝜑! ⟨𝜑!|Σ-

1
𝑀 | ⟩𝜓! ⟨𝜓!|Σ-Distance between and may not work.



Wasserstein distance 𝑊* is the cost for moving 𝑝 𝑥 to 𝑞 𝑥

𝑝 𝑥 𝑞 𝑥𝑊! 𝑝, 𝑞
𝑊' 𝑝, 𝑞 = min

(
/𝑐 𝑥, 𝑦 𝑑𝜋 𝑥, 𝑦

Ground cost (given)

Transport plan

𝑊" 𝑥# , 𝑦# = min
$∈ℝ!×#7#'(

)
7

*'(

+
𝐶#*𝑃#*

𝑃#* ≥ 07
#'(

)
𝑃#* =

1
𝑀 7

*'(

+
𝑃#* =

1
𝑁

𝐶$)

L.V.Kantorovich. “On the translocation of masses”. 

𝑦$

Use the optimal transport distance (Wasserstein distance)

=𝜋 𝑥, 𝑦 𝑑𝑥 = 𝑞 𝑦 , =𝜋 𝑥, 𝑦 𝑑𝑦 = 𝑝 𝑥 , 𝜋 𝑥, 𝑦 ≥ 0

In the sample space:

--- can be efficiently solved 
via linear programming

𝑥$



Ground cost 𝐶01 may be set as the trace distance

Quantum Wasserstein distance 𝑊2 is the cost for moving {| ⟩𝜓$ } to {| ⟩𝜑$ }

𝑊, {| ⟩𝜓# }, {| ⟩𝜑# } = min
$∈ℝ!×#7#'(

)
7

*'(

+
𝐶#*𝑃#*

𝑃#* ≥ 07
#'(

)
𝑃#* =

1
𝑀 7

*'(

+
𝑃#* =

1
𝑁

𝐶$)

{ | ⟩𝜓0 } { | ⟩𝜑0 }

𝐷 = 1 − 𝜓$ |𝜙* 𝑧)
"
= 1 − 𝜓$ |𝐺* 𝑧) |0

"

𝐺D
E 𝑧F

・・・𝜓$

Probability to have all zeros



𝑐-./0- |𝜓⟩, |𝜙⟩ =
1
𝑛

7
!'(

1
1 − 𝑝 !

𝑝 ! = Tr 𝑃2
! 𝐺3

4|𝜓⟩⟨𝜓|𝐺3

𝑃2
! = 𝟏(⊗𝟏5⊗⋯⊗ |0⟩⟨0| ⊗⋯⊗𝟏1

𝑐6-.70- |𝜓⟩, |𝜙⟩ = 1 − 𝜓 |𝐺3|0 5

Probability to have all zeros 𝐺D
E 𝑧F

・・・𝜓$

Barren plateau issue

--- The gradient vectors exponentially decay as # qubit increases.

Probability of the k-th bit to be zero

à Localization of the cost mitigates the barren plateau issue.



古典Wasserstein距離に関する、近似誤差の収束則(J.Weed et al 2019):

𝔼 𝒲+ 𝛼, 𝛽 −𝒲+ @𝛼%, A𝛽% ≲ 𝑂 𝑀,!/𝑵𝒛

学習に必要なサンプルデータ数は、データ空間の次元に依存せず、
潜在空間の次元𝑁/のみに依存する

真の距離 サンプリングに基づく推定値

サンプル数 潜在空間の次元

𝑐012341 |𝜓⟩, |𝜙⟩ は距離の公理を満たすが、 𝑐12541 |𝜓⟩, |𝜙⟩ は満たさない。

しかし、divergenceの公理を満たすため、コストとしては機能。

ただし、計算に必要なデータ数について注意が必要。

localize された𝑊2 は距離ではなく divergence。学習コスト︖



量⼦データセット 𝜓! , 𝜓" , ⋯ , 𝜓%  が与え
られたとき、これらを⽣成する量⼦モデルを学習。

問題設定

・量⼦データセット 𝜓$ %  と⽣成モデル 𝐺 𝑧, 𝜃⃗  のinversion testで学習を⾏う。
・Optimal transport lossを導⼊し、量⼦状態の”分布”情報を残したまま学習。
・Local costを導⼊し、勾配消失の問題を緩和する。

提案⼿法

・ Local cost化により、Costが距離の公理を満たさなくなる。学習に必要な
サンプル数について、良い性質があるか︖
・ Local cost化によって、勾配消失問題はどれほど緩和されるか︖

懸念点

これまでのまとめ

𝜓$ %



Global cost Local cost

勾配が消失せず
勾配が指数的

に消失

Change of the cost （dim(z)=2, n=6,10）

𝒏 = 𝟔 𝒏 = 𝟏𝟎

Variance of the gradient (at the initial point)

Localization of the cost mitigates the barren plateau issue.



Iteration

Initial 10 20 40 60 100 200

Initial 20 60 120 200 320 400

Initial 10 20 40 60 100 200
Target data

Model
Output

Training process



Training quantum data New quantum data produced
from the generative model

Prediction process

``赤道情報” が正しく学習されている。



𝒏 (# qubits)

𝑦 = 𝑎𝑀!"/𝒃 + 𝑐 
でfitting

コストの近似精度はHilbert空間の次元に依存せず、潜在空間の次元𝑵𝒛に
線型に依存する

𝒏 = 𝟖

𝑴 (# sample data)

距
離
の
近
似
誤
差

距離については次が成立：

𝔼 𝒲+ 𝛼, 𝛽 −𝒲+ (𝛼%, )𝛽% ≲ 𝑂 𝑀,!/𝑵𝒛

真の距離 サンプリングに基づく推定値

サンプル数 潜在空間の次元

いま、localize された𝑊7 は距離ではなく divergence。上記が成⽴するか︖



n 量⼦データの”分布”を学習可能な量⼦⽣成モデルを提案した

n ポイントは
u最適輸送距離（Wasserstein距離）の導⼊
uLocal costの導⼊

n 学習に必要なデータ数が、対象そのものの次元でなく、潜在空間の
次元𝑁6にのみ依存するため⾼次元系であっても、⽐較的少数のサン
プル数で学習が可能

まとめ



量子力学の特性を活かすカーネル設計法の開発

Quantum Fisher kernel for mitigating the vanishing similarity issue, 
Suzuki, Kawaguchi, Yamamoto, arXiv:2210.16581, 2022

量子機械学習は、量子状態の空間で回帰や分類器を構成。
良い分類器をつくるために、量子の特性を利用。そのような
量子の特性を利用する量子機械学習器は、``量子ならでは”
と期待。



Quantum machine learning
n Quantum machine learning (in NISQ* era) 

- Quantum computing possibly enhances the performance of machine 
learning (ML)

Quantum spaceInput space

| ⟩

| ⟩

Ex) ：Quantum-enhanced feature space for machine learning (ML) [1]

Large quantum space is exploited for feature extraction in ML tasks

*NISQ ・・・Noisy Intermediate-Scale Quantum

[1] Havlíček, Vojtěch, et al. "Supervised learning with quantum-enhanced feature spaces." Nature 567, 7747 (2019).

(e.g. 433 qubits → 28##≈ 10!#9 dim space)



Background: Quantum kernel method
nQuantum kernel methods [1]

[1] Havlíček, Vojtěch, et al. "Supervised learning with quantum-enhanced feature spaces." Nature 567, 7747 (2019).
[2] Liu, Yunchao, Arunachalam, Temme. "A rigorous and robust quantum speed-up in supervised machine learning." Nat. Phys. 17, 9 (2021).

𝑘 𝒙, 𝒙: = 𝜙 𝒙 𝜙 𝒙:
Kernel function:

Feature map: 𝜙 𝒙

Ex) DLP-inspired datasets [2]

𝒁!

Quantum 𝜙 𝒙classical 𝜙 𝒙

Quantum kernel have potential 
to have quantum advantage

Use Q computer

- Utilizing quantum computers for classical kernel method



Details of quantum kernel method
n Fidelity-based quantum kernel (QK)

[1] Havlíček, Vojtěch, et al. "Supervised learning with quantum-enhanced feature spaces." Nature 567, 7747 (2019).
[2] Liu, Yunchao, Srinivasan Arunachalam, and Kristan Temme. "A rigorous and robust quantum speed-up in supervised machine learning." Nat. Phys. 17, 9 (2021).

- A function defined using the fidelity to measure the similarity 
between a pair of data 𝒙, 𝒙7

Fidelity-based QK:

𝐾 =

Gram matrix: 

Classification
𝑓 𝒙 = ∑! 𝛼!𝐾 𝒙𝒊, 𝒙  

Regression
𝑦 𝒙 = ∑! 𝛼!𝑡!𝐾 𝒙𝒊, 𝒙  

Figure 1: Top (enclosed by the blue rectangular): The
dataset (= four batches) used in the numerical simulation.
Bottom (enclosed by the red rectangular): Examples of
images and their labels.

Training Data
(Batch ID)

Test Data
(Batch ID)

# of Trials

0,1 2,3,4,5,6,7 20
2,3 0,1,4,5,6,7 20
4,5 0,1,2,3,6,7 20
6,7 0,1,2,3,4,5 20

Table 1: The combination of the training/test dataset for
the 4-fold cross validation.

other six as the test dataset. We perform the 4-fold cross
validation by changing the training and test dataset, as
summarized in Table 1. For each training/test dataset, we
execute 20 trials (80 trials totally). To demonstrate the
semi-supervised learning, some of the labels in each batch
are masked; recall that the number of labeled example in
each batch is denoted by `, which takes ` = 2 or 5 in
this simulation. As the gradient descent algorithm, we
use Adam [37], whose learning coe�cient is set to 0.001
for the case of generator and 0.005 for the case of D/C.
Figure 4 shows the average classification accuracy for

the test data versus the number of iteration, which are
obtained as the average over 80 trials. The two subfig-
ures are obtained with di↵erent number of labeled data,
as ` = 2 and ` = 5. In each subfigure, three cases are
shown, depending on the type of generator; the quantum
generator with one layer (blue) and that with four layer

Figure 2: The quantum circuit with four layers used in
the simulation.

Figure 3: The D/C system, where the last layer functions
as the classifier C(x) or the discriminator D(x).

(orange); also as a reference, the case of uniform-noise
generator (green) that randomly generates 8-bit data with
equal probability, which is not updated while training, is
presented. The error bars represent the standard devia-
tion of the average classification accuracy.

We see that, when only a few labeled data is available
(` = 2), the quantum generator with four layers results in
the highest classification accuracy, which implies that the
quantum generator with bigger expressibility contributes
to the higher accuracy by e↵ectively generating samples
to train the classical D/C. On the other hand, in the case
where five of eight image data in each batch are labeled
(` = 5), the three generators achieve almost the same
accuracy. This might be because, in this case, all the gen-
erators fail to generate more valuable dataset than the set
of labeled real data, for e↵ectively training the D/C. This
observation is supported by the fact that the untrained
uniform-noise generator, which of course is not related to
the real dataset, achieves almost the same classification
accuracy. Therefore, we expect that the quantum genera-
tor is useful when the number of labeled data is limited.

In this numerical simulation, we obtained the best clas-
sification accuracy when the constructed classical sample
distribution corresponding to the output of the quantum
generator does not match the distribution producing the
real dataset, as predicted in [38]. In addition, we found
that the cost for the quantum generator, LG, is larger than

4



(量子超越的)性能を出すために 𝑈(𝑥, 𝜃)は帰納バイアス(データに対す
る事前知識など)をもつ必要があるが、構成法が全く非自明：量子帰納
バイアス問題。

<困難１>

（例） Lie et al, Nat Phys. では離散対数データに対してショア回路を構成

<困難２>
𝑈(𝑥, 𝜃)に十分な表現力をもたせると、標準カーネル 𝑘;(𝑥, 𝑥′)が量子

ビット数に対して指数的に小さくなる：類似度消失問題 --- 経験的に
知られていたが、EPFLのグループおよび本論文で証明された。

# qubits

量子ニューラルネットワークにおける「勾配消失問題」は
2018年に指摘され、以後対処法が多数提案されてきた。
代表例：Alternating Layered Ansatz (ALA) を使うもの
(Cerezo (LANL), Nat Comm 2021)。

しかし本論文で、標準カーネル＋ALAでも類似度
消失することを証明

ALA



Vanishing similarity issue
nVanishing similarity issue in the fidelity-based QK*

- Exponential decrease of the expectation value and variance w.r.t. # qubits

Gram matrices 𝐾 of the fidelity-based QK for different # qubit

𝒌𝑸 𝒙, 𝒙:  decays exponentially fast for 
different inputs 𝒙 ≠ 𝒙:

An exponential number of measurement shots / overfitting & 
poor generalization performance

𝐾 =

* This is empirically known [3], but analytically unexplored
[3] Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nat. Commun. 12, 2631 (2021).



Vanishing similarity issue
nAnalytical investigation (Setting)

Analytical results of the fidelity-based QK for two types of quantum circuits

(1) Random quantum circuit acting     
on all 𝑛 qubits

(2) Alternating layered ansatz (ALA)

: 2-design (unitary is sampled from an ensemble of unitary possessing 
the property of the Haar random unitary up to degree 2)

Fidelity-based QK:
𝑘; 𝒙, 𝒙: = Tr 𝜌𝒙,𝜽𝜌𝒙,,𝜽 with 𝜌𝒙,𝜽 = 𝑈 𝒙, 𝜽 𝜌9𝑈@ 𝒙, 𝜽

[4] Cerezo, Marco, et al. "Cost function dependent barren plateaus in shallow parametrized quantum circuits." Nat. Commun. 12, 1791 (2021).



Vanishing similarity issue
nAnalytical investigation (Result)

Analytical results of the fidelity-based QK for two types of quantum circuits

Proposition 1 (Informal statement on the fidelity-based QK)

The expectation value and the variance of the fidelity-QK vanish
exponentially fast w.r.t. #qubits for both types of quantum circuits.

Case (1) Case (2)𝑘; = ⁄1 2A

Var 𝑘; =
2A − 1

2"A 2A + 1
≈

1
2"A

𝑘; = ⁄1 2A

Var 𝑘; ≤
2B

2"C + 1 B −
1
2"A

≈
1

2A ",!C

Case (1) Case (2)

: 2-design

ØFidelity-based QK cannot avoid the issue even with ALA



成果：帰納バイアスを系統的に導入でき、類似度消失問題を緩和する
量子カーネルを発見。

ポイント：フィッシャーカーネル。古典では

𝑘;D 𝒙, 𝒙: = 𝑳𝒙,𝜽, 𝑳𝒙:,𝜽 ℱ89
= ∑$,)ℱF,G,! 𝑳𝒙,𝜽:, 𝑳𝒙:,𝜽; H

 

𝑘D 𝒙, 𝒙: = 𝒈𝒙,𝜽, 𝒈I:,𝜽 ℐ89
= 𝒈𝒙,𝜽K ℐ,!𝒈I:,𝜽

𝒈𝒙,𝜽 = ∇𝜽 log 𝑃𝒙,𝜽 :スコア関数

𝑃𝒙,𝜽：データ生成分布(実際は、データから

生成モデルを構築)

量子版(量子フィッシャーカーネル)を提案

𝑳𝒙,𝜽：スコア関数を量子化したもの

[5] Jaakkola, Tommi, and David Haussler. "Exploiting generative models in discriminative classifiers." Adv. in Neural Inf. Process. Syst. 11 (1998).



Our proposal: Quantum Fisher kernel
nQuantum Fisher kernel (QFK)

- A quantum extension of the classical Fisher kernel that incorporates the 
data structure into the kernel design [5]:

𝑘;D 𝒙, 𝒙: = !
"
∑$ Tr 𝜌9 D𝐵𝒙,*- , D𝐵𝒙:,*-  

S𝐵𝒙,3* = 𝑈(:#
4 𝒙, 𝜽 𝐵3*𝑈(:# 𝒙, 𝜽 𝜌2: initial state

𝑈(:# 𝒙, 𝜽 = 𝑈# 𝒙, 𝜃# …𝑈5 𝒙, 𝜃5 𝑈( 𝒙, 𝜃( :input- and parameter-dependent unitary

𝒙: input data 𝜽: parameters

QFK measures local similarities using information geometric quantity

Fidelity-based QK : Global similarity QFK : Local similarity



Vanishing similarity issue in QFK
nAnalytical investigation (Setting)

- Analytical results of the QFK for two types of quantum circuits

The i th component of QFK:

[4] Cerezo, Marco, et al. "Cost function dependent barren plateaus in shallow parametrized quantum circuits." Nat. Commun. 12, 1791 (2021).

D𝑘;D =
!
"
Tr 𝜌9 D𝐵𝒙,*- , D𝐵𝒙:,*-  with   D𝐵𝒙,*- = 𝑈!:$

@ 𝒙, 𝜽 𝐵*-𝑈!:$ 𝒙, 𝜽

(1) Random quantum circuit acting     
on all 𝑛 qubits

(2) Alternating layered ansatz (ALA)

: 2-design (unitary is sampled from an ensemble of unitary possessing 
the property of the Haar random unitary up to degree 2)



Vanishing similarity issue in QFK
nAnalytical investigation (Result)

- Analytical results of the QFK for two types of 
quantum circuits

Theorem 1 (Informal statement on the ALDQFK)

The expectation of the QFK is zero for both types of quantum circuits.
The variance of the QFK does not depend on the number of qubits 𝑛,
but on the size of the unitary blocks in the ALA, 𝑚, and the depth of
the corresponding unitary block, 𝑑 for the ALA, while the issue arises
for the random quantum circuits.

Case (1) Case (2)

(1) (2)

ØQFK using ALA with shallow depth can avoid the vanishing 
similarity issue

Var D𝑘;D ≈
1

2AM!
Var D𝑘;D ≥

2"CN 2CN − 1
2 2"C − 1 " 2C + 1 8 N,! ≈

1
2CN



Numerical simulations
nNumerical simulations to verify Proposition and Theorem

- Three types of quantum circuits with depth 𝐿 = 3 are used for both QKs

QFK

Tensor-product 
(Tensor)

ALA with 2-qubit unitary 
blocks (ALA2)

Hardware efficient 
ansatz (HEA)

Quantum circuits:

# qubits



Expressivity analysis of QFK
nExpressivity of the QFK in terms of Fourier analysis [6]

- Compare the Fourier coefficients of the fidelity-based QK and the QFK

𝑘 𝒙, 𝒙: =K
O,O,∈Q

𝑒$O𝒙𝑒$O,𝒙,𝑐O,O,Fourier representation:

[6] Schuld, Maria. "Supervised quantum machine learning models are kernel methods." arXiv preprint arXiv:2101.11020 (2021).

標準カーネル

フィッシャーカーネル

(𝜔, 𝜔′)



Performance analysis of QFK
nPerformance analysis using a synthesized dataset

Compare the performance of QKs using a simple binary classification task

A
cc

ur
ac

y
Number of qubits

Fidelity 
QK

QFK

Synthesized dataset : 𝑥$, 𝑦$ 𝒊𝟏𝟎𝟎

𝑦$ = sgn sin 𝑤𝑥$ + 0.3

𝑤 : Frequency of the datasets



Summary
nSummary

l To analytically show the limitation of fidelity-based QK (the 
vanishing similarity issue)

l To propose a new class of quantum kernels, “quantum Fisher 
kernel” (QFK)
• Analytically and numerically show the QFK can avoid the vanishing 

similarity issue
• Show an example where the QFK can outperform the fidelity-based 

QK in performance

The number of qubits

Fidelity-based QK (upper panel), QFK (lower panel)



量子状態モデル選択のための情報量規準

Quantum information criteria for model selection 
in quantum state estimation
Yano and Yamamoto, arXiv 2023

量子機械学習は、量子状態の空間で回帰や分類を実行。
モデルも、量子状態の空間に「住んでいる」。どんなモデルが
良いか？量子状態の空間内部に分け入って考えてみよう。



問題：未知のデータ生成源(確率分布)の数理モデルを定めたい。２つの
モデル分布 𝑓!(𝑥|𝜃)、𝑓"(𝑥|𝜃)のどちらが良いか、データをもとに判定。

生成源とモデルの距離(KL divergence)は
赤池情報量規準(AIC)で評価される：

AIC =モデルのデータへの適合具合
+ モデルの複雑さ(パラメータ数)

データ生成源

𝑓"(𝑥|𝜃)

𝑓!(𝑥|𝜃)
モデル１：

モデル２：

モデル選択規準：AIC が小さくなるモデルを選ぶべし

= −2ΣUlog 𝑓 𝑥U| C𝜃 + 2𝑝

{𝑥U} : データ 最尤推定パラメータ

モデルには適合具合と複雑さのトレードオフが
ある。このこと(オッカムの剃刀)を初めて数式化
したのがAIC

Min of KL

p 過小 p 過大



AICは 期待対数尤度 に対して漸近的な不偏推定量

AIC は有限のデータ 𝒙A = {𝑥!, 𝑥", … , 𝑥A} によって揺らぐ

しかし比較するモデルが階層モデル 𝑀! ⊂ 𝑀" ⊂ ⋯ のとき
この揺らぎはモデルに共通して現れるので、モデルの比較
では揺らぎが相殺され、比較に影響を及ぼさない

今回考えた量子情報量規準も上記と同様の性質を持っている

注意：情報量規準AICは確率変数



問題：未知の量子状態 𝜌の数理モデル σ(𝜃)を定めたい。２つの
モデル状態 𝜎!(𝜃)、𝜎"(𝜃)のどちらが良いか、``データ”をもとに判定。

生成源とモデルの距離(量子相対エントロピー)を評価する指標を導出：

QTIC = −2Tr Σ9 ;𝜌9 log 𝜎 ?𝜃 + 2Tr[𝐹 ?𝜃 𝐽 ?𝜃 :']

未知の量子状態

{ \𝜌! , \𝜌" , \𝜌# , \𝜌8 , ・・・}

古典計算機上で効率的に構成
できる𝜌の表現 (Classical Shadow)：

𝜎"(𝜃)

モデル１：
モデル２：

Min of Q relative 
entropy

𝝆

𝜎!(𝜃)
〜これがデータ

--- これが小さくなる
モデルを選ぶべし



真の量子状態は
モデルM1 に
含まれている

単純モデルM1 vs 複雑モデルM2 の例：

横軸：QAIC (を少し変えたもの)

AIC は日本発の統計・学習
理論における金字塔。これ
の量子版構築は不変的な
価値があると考える。課題は
数多い。量子生成モデルの
設計問題に応用したい。

M1      M2      

M1      

M2      



機械学習による分子構造デザイン

量子力学の特性を活かすカーネル設計法の開発

新奇量子状態を探索するための量子生成モデルの構築法

量子状態モデル選択のための情報量規準
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